
Chapter 2: Differentiation

Section 2.1: The Derivative and the Tangent
Line Problem

In algebra, you learned how to calculate the slope
(Δy/Δx) of a line between two points on a curve,
but the question of how to find the slope of a line
tangent to a curve at a single point (see Figure 1)
was left unanswered.

In calculus, one may approach the latter question
by calculating the slope between two points (c, 
f(c)) and (x, f(x)) (Figure 2), and taking the limit as
they approach each other (Figure 3)

lim
xc

∆ y
∆ x

= lim
x c

f x − f c
x − c

It is often more convenient to rewrite this
expression in terms of the difference between the
points (Δx).  Hence,

lim
∆ x0

∆ y
∆ x

= lim
∆ x0

f x  ∆ x − f x
∆ x

This expression has a special name in calculus
and is known as the derivative of f(x) (with respect
to x) and is symbolized df/dx.

df
dx

= lim
∆ x0

f  x  ∆ x − f x
∆ x

You may also use one of these alternative
notations for the derivative of f(x):

df
dx

=
d
dx

f x  = f ' x  = D x f x 

Differentiability and Continuity

If the derivative (according to the above definition)
exists at a particular point x, the function is said to
be differentiable at that point.

For a function to be differentiable over an entire interval, it is required that it be also 
continuous over that interval.  The reason is that derivatives involve limits, and limits do not 
exist at discontinuities.

Figure 1: Line ℓ is tangent to f(x) at the point    (c,
f(c))
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Figure 2: Slope of the secant line connecting two 
points
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Figure 3: The limit of the slope between two 
points as x approaches c equals the slope of the 
tangent line at x = c.
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All differentiable functions are continuous.  The converse of this statement is not true, 
however: not all continuous functions are differentiable.  There is even one function—the 
Weierstrass function—that is continuous everywhere but differentiable nowhere!

All polynomial functions, as well as sin x and cos
x, are differentiable everywhere.

Power functions whose  exponents are less than 1,
such as f(x) = x1/3, are not differentiable when x =
0, because the slope approaches infinity near the
origin.

Section 2.2: Basic Differentiation Rules and
Rates of Change

This section contains introduces several important shortcuts that can be used to calculate 
derivatives without resorting to the definition.  All of these can be derived from the original 
definition of the derivative.  What follows is the definitions of each rule, followed by a short 
paraphrase that you can use to remember it:

The constant rule states that if c is a constant, then
d
dx

c = 0

“The derivative of a constant is zero.”

The power rule states that 
d
dx

xn
= n xn − 1

“Bring the exponent to the front and reduce by one.”

The constant multiple rule states that if c is a constant, then 
d
dx

[c f  x  ] = c
d
dx

f x 

“Constants may be factored out of the derivative.”

The sum and differences rule state that
d
dx

[f x  ± g x ] = f ' x  ± g ' x 

“The derivative of a sum is equal to the sum of the derivatives.”

The derivatives of sin x and cos x are
d
dx

sin x = cos x
d
dx

cos x =−sin x

“The derivative of sin x is cos x.  The derivative of cos x is -sin x.”

Figure 4: An example of a function which is 
continuous but not differentiable at a point.
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Rates of change

A more general interpretation of the derivative is the rate of change of one variable with 
respect to another.  In other words, df/dx means “how fast f is changing when x is varied.”  In  
particular, the derivative ds/dt—where s is displacement and t is time—represents velocity.  
(As you may have learned in physics, speed is the absolute value of velocity.)

The exact equations governing the relationship between displacement and velocity depend on
the displacement function.  In the particular case of constant acceleration, the equation is:

s t  =
1
2

a t 2
 v0t  s0

where v0 and s0 are the velocity and displacement when t = 0 and a is acceleration.  In the 
case of an free-falling object, a = g -9.8 m/s2.

Section 2.3: Product and Quotient Rules and Higher-Order Derivatives

The Product Rule

The product rule states that
d
dx

[f x g x  ] = f ' x gx   g ' x  f x 

“The derivative of a product is the derivative of the first times the second plus the derivative of
the second times the first.”

This is sometimes abbreviated as fg  ' = f ' gg ' f

The quotient rule states that

d
dx [

f x 

g x  ]=
f ' x gx  − g ' x  f x 

[g x ]
2

“The derivative of a quotient is the derivative of the numerator time the numerator minus the 
derivative of the denominator times the numerator all over the denominator squared.”

In other words, f /g ' =
f ' g − g ' f

g2

Because many complicated functions can be written as the product or quotient of two simpler 
functions, the product and quotient rules vastly increase the number of functions that can be 
differentiated.

Higher-order derivatives
To calculate the second derivative of a function, first calculate its derivative and then take the 
derivative again.  The second derivative can be written in the following ways:



y ' ' = f ' ' (x) =
d2 y
dx2 =

d2

dx2 f (x) = D x
2
( y)

This process of repeated derivatives can be repeated an indefinite number of times.  In 
general, the nth derivative is expressed as follows:

y n 
= f n 

x  =
dn y

dxn =
dn

dxn f x = Dx
n y

One familiar second derivative is acceleration, which is the first derivative of velocity with 
respect to time, and the second derivative of the displacement with respect to time.

a =
dv
dx

=
d2 s

dt 2


